Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Neural Comput Appl ; : 1-23, 2023 May 04.
Article in English | MEDLINE | ID: covidwho-2318419

ABSTRACT

Nowadays, quick, and accurate diagnosis of COVID-19 is a pressing need. This study presents a multimodal system to meet this need. The presented system employs a machine learning module that learns the required knowledge from the datasets collected from 930 COVID-19 patients hospitalized in Italy during the first wave of COVID-19 (March-June 2020). The dataset consists of twenty-five biomarkers from electronic health record and Chest X-ray (CXR) images. It is found that the system can diagnose low- or high-risk patients with an accuracy, sensitivity, and F1-score of 89.03%, 90.44%, and 89.03%, respectively. The system exhibits 6% higher accuracy than the systems that employ either CXR images or biomarker data. In addition, the system can calculate the mortality risk of high-risk patients using multivariate logistic regression-based nomogram scoring technique. Interested physicians can use the presented system to predict the early mortality risks of COVID-19 patients using the web-link: Covid-severity-grading-AI. In this case, a physician needs to input the following information: CXR image file, Lactate Dehydrogenase (LDH), Oxygen Saturation (O2%), White Blood Cells Count, C-reactive protein, and Age. This way, this study contributes to the management of COVID-19 patients by predicting early mortality risk. Supplementary Information: The online version contains supplementary material available at 10.1007/s00521-023-08606-w.

2.
Diagnostics (Basel) ; 12(9)2022 Sep 03.
Article in English | MEDLINE | ID: covidwho-2009978

ABSTRACT

With the onset of the COVID-19 pandemic, the number of critically sick patients in intensive care units (ICUs) has increased worldwide, putting a burden on ICUs. Early prediction of ICU requirement is crucial for efficient resource management and distribution. Early-prediction scoring systems for critically ill patients using mathematical models are available, but are not generalized for COVID-19 and Non-COVID patients. This study aims to develop a generalized and reliable prognostic model for ICU admission for both COVID-19 and non-COVID-19 patients using best feature combination from the patient data at admission. A retrospective cohort study was conducted on a dataset collected from the pulmonology department of Moscow City State Hospital between 20 April 2020 and 5 June 2020. The dataset contains ten clinical features for 231 patients, of whom 100 patients were transferred to ICU and 131 were stable (non-ICU) patients. There were 156 COVID positive patients and 75 non-COVID patients. Different feature selection techniques were investigated, and a stacking machine learning model was proposed and compared with eight different classification algorithms to detect risk of need for ICU admission for both COVID-19 and non-COVID patients combined and COVID patients alone. C-reactive protein (CRP), chest computed tomography (CT), lung tissue affected (%), age, admission to hospital, and fibrinogen parameters at hospital admission were found to be important features for ICU-requirement risk prediction. The best performance was produced by the stacking approach, with weighted precision, sensitivity, F1-score, specificity, and overall accuracy of 84.45%, 84.48%, 83.64%, 84.47%, and 84.48%, respectively, for both types of patients, and 85.34%, 85.35%, 85.11%, 85.34%, and 85.35%, respectively, for COVID-19 patients only. The proposed work can help doctors to improve management through early prediction of the risk of need for ICU admission of patients during the COVID-19 pandemic, as the model can be used for both types of patients.

3.
Diagnostics (Basel) ; 12(4)2022 Apr 07.
Article in English | MEDLINE | ID: covidwho-1785560

ABSTRACT

Problem-Since the outbreak of the COVID-19 pandemic, mass testing has become essential to reduce the spread of the virus. Several recent studies suggest that a significant number of COVID-19 patients display no physical symptoms whatsoever. Therefore, it is unlikely that these patients will undergo COVID-19 testing, which increases their chances of unintentionally spreading the virus. Currently, the primary diagnostic tool to detect COVID-19 is a reverse-transcription polymerase chain reaction (RT-PCR) test from the respiratory specimens of the suspected patient, which is invasive and a resource-dependent technique. It is evident from recent researches that asymptomatic COVID-19 patients cough and breathe in a different way than healthy people. Aim-This paper aims to use a novel machine learning approach to detect COVID-19 (symptomatic and asymptomatic) patients from the convenience of their homes so that they do not overburden the healthcare system and also do not spread the virus unknowingly by continuously monitoring themselves. Method-A Cambridge University research group shared such a dataset of cough and breath sound samples from 582 healthy and 141 COVID-19 patients. Among the COVID-19 patients, 87 were asymptomatic while 54 were symptomatic (had a dry or wet cough). In addition to the available dataset, the proposed work deployed a real-time deep learning-based backend server with a web application to crowdsource cough and breath datasets and also screen for COVID-19 infection from the comfort of the user's home. The collected dataset includes data from 245 healthy individuals and 78 asymptomatic and 18 symptomatic COVID-19 patients. Users can simply use the application from any web browser without installation and enter their symptoms, record audio clips of their cough and breath sounds, and upload the data anonymously. Two different pipelines for screening were developed based on the symptoms reported by the users: asymptomatic and symptomatic. An innovative and novel stacking CNN model was developed using three base learners from of eight state-of-the-art deep learning CNN algorithms. The stacking CNN model is based on a logistic regression classifier meta-learner that uses the spectrograms generated from the breath and cough sounds of symptomatic and asymptomatic patients as input using the combined (Cambridge and collected) dataset. Results-The stacking model outperformed the other eight CNN networks with the best classification performance for binary classification using cough sound spectrogram images. The accuracy, sensitivity, and specificity for symptomatic and asymptomatic patients were 96.5%, 96.42%, and 95.47% and 98.85%, 97.01%, and 99.6%, respectively. For breath sound spectrogram images, the metrics for binary classification of symptomatic and asymptomatic patients were 91.03%, 88.9%, and 91.5% and 80.01%, 72.04%, and 82.67%, respectively. Conclusion-The web-application QUCoughScope records coughing and breathing sounds, converts them to a spectrogram, and applies the best-performing machine learning model to classify the COVID-19 patients and healthy subjects. The result is then reported back to the test user in the application interface. Therefore, this novel system can be used by patients in their premises as a pre-screening method to aid COVID-19 diagnosis by prioritizing the patients for RT-PCR testing and thereby reducing the risk of spreading of the disease.

SELECTION OF CITATIONS
SEARCH DETAIL